FORMAL :

CISC422/853: Formal Methods [IFZ0N

in Software Engineering:

CWITH LOTT
OF PICTURELY

s o

Computer-Aided Verification M;;'m

Topic 6: Intro to Promela and Spin

Juergen Dingel

Feb, 2009
Readings:

Spin book, Chapters 3, 7, 11, 12

CISC422/853, Winter 2009

Modeling Behaviour of Systems

Where are we?
« We've decided to use FSAs to model the behaviour of
software systems
* Have seen:
° Definition
° Two types of parallel composition
° Various extensions

What's next?

« But, to be able to feed FSAs into a model checker, we need to
be able to express FSAs textually in some language
« Also, it would be nice if that language was as high-level (user-
friendly) as possible.
¢ 2 examples for modeling languages based on FSAs:
° BIR (used by Bogor model checker)
° Promela (used by Spin model checker)

CISC422/853, Winter 2009

Promela and Spin

= Promela (PROcess MEta LAnguage):
* modeling language used to describe concurrent systems, e.g.,
° network protocols, telephone systems
° multi-threaded programs that communicate via

-~ shared variables, or
- synchronous/asynchronous message passing

e used by...
= SPIN (Simple Promela INterpreter):
e analyzes Promela programs to detect errors such as

° deadlocks, race conditions,
° violations of assertions, invariants, safety and liveness properties

« developed since late 1970s by Gerard Holzmann at Bell Labs
(now at NASA’s Jet Propulsion Lab)
« received ACM Software System award in 2001

CISC422/853, Winter 2009

Intro to Promela

* http://spinroot.com/spin/Doc/SpinTutorial.pdf.

m SPIN 2002 Workshop ﬁ—*aﬁ
SPIN Beginners' Tutorial

Grenoble, France
Thursday 11-Apr-2002

Theo C. Ruys

University of Twente 9
Formal Methods & Tools group

http://www.cs.utwente.nl/~ruys

CISC422/853, Winter 2009

Promela Model

« Promela model consist of: mtype = {MSG, ACK};
— type declarations chan toS =
chan toR =

channel declarations
variable declarations
process declarations proctype Sender() {
[init process]

bool flag;

} - process body
+ A Promela model corresponds
with a (usually very large, but)
finite transition system, so b
— no unbounded data
— no unbounded channels oc
no unbounded processes } = creates processes
no unbounded process creation

proctype Receiver() {

init {

Thursday 11-Apr-2002 Thes C. Fuys - SPIM Beginners' Tutorial 15 s’
Uningrzing o Toriuie

Processes (1)

+ A process type (proctype) consist of
— aname

a list of formal parameters

local variable declarations

body name /— formal parameters
e

-~ -
proctype Sender(chan in; chan out) {
bit sndB, rcvB

do
:: out ! MSG, sndB ->
in ? ACE, rovBb;

if
bOdy :: sndB == rovB -> sndB = 1-sndB
:: else -> skip
= [The body consist of a J

¥ ™— |ocal variables

CISC422/853, Winter 2009

. od sequence of statements.
QP 3 Thursday 11-Apr-2002 Thea L. Ruys - SPTM Beginners' Tutorial 16 s
Uherrpie o TR
CISC422/853, Winter 2009 6

Processes (2

« Aprocess
— is defined by a proctype definition
— executes concurrently with all other processes,
independent of speed of behaviour
— communicate with other processes
+ using global (shared) variables
+ using channels

* There may be several processes of the same type.

+ Each process has its own local state:
— process counter (location within the proctype)

— contents of the local variables

Thursday 11-Apr-2002 Theo C. Ruys - SPTM Beginners' Tutorial 17 s
Umimzyzity o Tosieie:

Processes (3)

= Process are created using
the run statement (which
returns the process id). }

proctype Foo(byte x) {

* Processes can be created
at any point in the execution |init {

(within any process). e, Il = i HemiE) ¢
run Foo(27) ;

* Processes start executing } number of pracs. (opt.)
after the run statement. R s et
activel[

* Processes can also be I pEeEEEs fex) |
created by adding active)
in front of the proctype parameters will be

declaration. initialised to O

Thursday 11-Apr-2002 Theo C. Ruys - SPTN Beginners' Tutorial 18 s
P Usozioy e meres

&

CISC422/853, Winter 2009

CISC422/853, Winter 2009 8

Variables and Types @)

Basic types
+ Five different (integer) bit turn=1; [0.1]
basic typesl bool flag; [01]
byte counter; [D 255]
+ Arrays short s; [218-1. 216 —1]
int msq; [—232—1.. 232 —ﬂ
+ Records (structs)
Arrays ————
; y
+ Type conflicts are detected byte a[27]; indicing
at runtime. bit flags[4]; start at 0
+ Default initial value of basic Typidefd(zcirds)d .
. ype Clalad o
yarlables (local and global) short £1;
is 0. } byte £2; variable
Record rr: declaration
rr.fl = ..
Q‘P Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20 s
Umrensioy o e

CISC422/853, Winter 2009

Variables and Types (2)

- 5 int ii;
:;:;21%5 should be Feis
: Pl __— assignment =
» Variables can be given a 1i-2;
value by:
— assignment short s=-1;~ declaration +
) initialisation
— argument passing typedef Foo {
— message passing bit bb;
(see communication) }_mt =0
. : ; Foo f;
Vanable; can be used in E
expressions. £.ii = -2; I
. . : equal test ==
Meost arithmetic, relational, {i%s+27 = 23

and logical eperators of
C/Java are supported,
including bitshift operators.

printf (“walue: %d”, s*s);

Theo C. Ruys - SPIN Beginners' Tutorial 21 s
Usivascity o Tovera

Q‘,'h: Thursday 11-Apr-2002

CISC422/853, Winter 2009

10

Statements)

* The body of a process consists of a sequence of
statements. A statement is either executable/blocked
— executable: the statement can ~ depends on the global
. . state of the system.
be executed immediately.
— blocked: the statement cannot be executed.

* An assignment is always executable.

+ An expression is also a statement; it is executable if it
evaluates to non-zero.

2 <3 always executable
x < 27 only executable if value of x is smaller 27
3+ x executable if x is not equal to -3
P Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22 s
Umrrrnsing o Teeeras

CISC422/853, Winter 2009

11

Statements are
separated by a
semi-colon: *;".

Statements (2

+ The skip statement is always executable.
— “does nothing", only changes process’ process counter

+ A run statement is only executable if a new process can be
created (remember: the number of processes is bounded).

+ Aprintf statement is always executable (but is not
evaluated during verification, of course).

int x;
proctype Aap()

. Executable if Noot can
AwE gl be created...
skip;

run Noot() ;

x=2; g Can only become executable
x>2 && y==1;

if a some other process
skip; makes x greater than 2.
}

@P S Thursday 11-4pr-2002

Theo C. Ruys - SPTN Beginners' Tutorial 23 s
ity o Tewrar

CISC422/853, Winter 2009

12

Statements (3)

* assert (<expr>) ;
— The assert-statement is always executable.
— If <expr> evaluates to zero, SPIN will exit with an error, as
the <expxr> *has been violated”.
— The assert-statement is often used within Promela models,
to check whether certain properties are valid in a state.
proctype monitor() {

assert(n <= 3);

}
proctype receiver() {

toReceiver ? msqg;

Interleaving Semantics

* Promela processes execute concurrently.
* Non-deterministic scheduling of the processes.

* Processes are interleaved (statements of different
processes do not occur at the same time).
— exception: rendez-vous communication.

« All statements are atomic; each statement is executed
without interleaving with other processes.

« Each process may have several different possible actions
enabled at each point of execution.
— only one choice is made, non-deterministically.

assert(msg != ERROR) ;
} = randomly
& Thursday 11-Apr-2002 Theo €. Ruys - SPTN Beginners' Tutorial 24 s @‘) Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 25 S
P Uniremsiay o Tareres Unirerity o8 i
CISC422/853, Winter 2009 13 CISC422/853, Winter 2009 14
Dekker 11962 inspired by:
DEMO Mutual Exclusi ekker [1962] if-statement « Dijkstra's guarded
urtudl exciusion (3) M command language
bit x, y; /* sigmal entering/leaving the section */ if
byte mutex; /* # of proes in the critical section. #*/ choice, -> stat, ,; stat, ,; stat, 3;
byte turn; /* who's turn is it? */ choice, -> stat, ;; stat, ;,; stat, ;3;
active proctype A() { active proctype B() { g
o= i 7= 11;) E : -c'.hcu.cen -> stat, ;; stat, ,; stat, ;;
turn = B_TURN; turn = A TURN; £1;
y =20 1| x =0]|
(turn == A TURN) ; (turn == B_TURN) ; + |[fthere is at least one choice, (guard) executable, the i£-
ﬁﬁt:i‘:' ‘““te"’:’:f statement is executable and SPIN non-deterministically
’ muexT chooses one of the executable choices.

Can be generalised

x = 0; .
to a single process.

y =0;

} }

active proctype monitor() {
assert(mutex 1= 2);

First “software-only” solution to the
mutex problem (for two processes).

Thursday 11-Apr-2002 Theo €. Buys - SPIN Beginners' Tutorial 30 s
ey of T

CISC422/853, Winter 2009 15

+ If no choice; is executable, the i f-statement is blocked.

+ The operator “->" is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32 s
P Uniezioy o Tnerras

CISC422/853, Winter 2009

16

if-statement ()

if
(n %2 1=0) ->n=1 * The else guard becomes
(n >= 0) ~> n=n-2 executable if none of the
s = = e other guards is executable.
: else -> skip
£i

give n a random value non-deterministic branching

if
:: skip -> n=0
: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi _
skips are redundant, because assignments
are themselves always executable...

Theo €. Ruys - SPTN Beginners' Tutorial 33 s

QP\: Thursday 11-Apr-2002
Usivescity o8 Bovarte

CISC422/853, Winter 2009

17

do-statement ()

do
checice; -> stat; ,; stat; ,; stat, ;;
cheoice, -> stat; ; stat, ;; stat, 5/

i ;hoicen -> stat, ;; stat,,; stat, s;

od;

+ With respect to the choices, a do-statement behaves in the
same way as an if-statement.

+ However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

+ The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34 s

Usenoy W T

CISC422/853, Winter 2009

18

do-statement (2

if- and do-statements
are ordinary Promela
statements: so they can
be nested.

+ Example — modelling a traffic light

mtype = { RED, YELLOW, GREEN }

S~—

mtype (message type) models enumerations in Promela

active proctype TrafficLight() {
byte state = GREEN;

do
(state == GREEN) -> state = YELLOW;
(state == YELLOW) -> state = RED;
(state == RED) -> state = GREEN;
od; \
} Note: this do-loop does not contain

any non-deterministic choice.

Theo C. Ruys - SPIN Beginners' Tutorial 35 s
Univesing of Bveran

Thursday 11-Apr-2002

CISC422/853, Winter 2009

19

Communication ()

s2r
------------- - .
Sender Receiver
i = e -
r2s
MSE
s2r |MSG E
s2r?MSG
ACK r2s!ACK
r2s?ACK E
! is sending
2 is receiving
& Thursday 11-Apr-2002 Theo C. Buys - SPIN Beginners' Tutorial 36 s
P Ummmioy & T

CISC422/853, Winter 2009

20

Communication (2

+ Communication between processes is via channels:
— message passing
— rendez-vous synchronisation (handshake)

. also called:
+ Both are defined as channels: queue or buffer

chan <name> = [<dim>] of {<t >,<t,>, .. <t >}:
. -

~
name of type of the elements that will be
the channel transmitted over the channel

number of elements in the channel
dim==0 is special case: rendez-vous

chan ¢ = [1] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record}; -~ &MMay of
channels
Q Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 37 s
P Usiveacity o Berrar

CISC422/853, Winter 2009

21

Communication (3)

+ channel = FIFO-buffer (for dim>0)

I Sending - putting a message into a channel
ch ! <expr.>, <expr,>, .. <exXpr.>;
+ The values of <expr;> should correspond with the types of the
channel declaration.
+ A send-statement is executable if the channel is not full.

7 Receiving - getting a message out of a channel

arr+ ©¢h ? <var;>, <var,>, .. <var>; message passing
<const> + If the channel is not empty, the message is fetched from the channel
can bj and the individual parts of the message are stored into the <var.>s.
mixe ch ? <const,>, <const,>, . <const,>; message testing

+ If the channel is not empty and the message at the front of the
channel evaluates to the individual <const,>, the statement is

executable and the message is removed from the channel.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 38 s
P Unirmsioy o Teveres

§

CISC422/853, Winter 2009

22

Communication (4

* Rendez-vous communication
<dim> ==
The number of elements in the channel is now zero.

— If send ch'! is enabled and if there is a corresponding
receive ch? that can be executed simultaneously and the
constants match, then both statements are enabled.

— Both statements will “handshake™ and together
take the transition.

« Example:
chan ch = [0] of {bit, byte};
- P wants to do ch ! 1, 347
— Qwants to do ch ? 1, x
— Then after the communication, = will have the value 10.

Q Thursday 11-Apr-2002 Theo C. Ruys - SPTN Beginners' Tutorial 39 s
P Univacity = Bewrar

CISC422/853, Winter 2009

23

DEMO

Alternating Bit Protocol (1)

+ Alternating Bit Protocol
— To every message, the sender adds a bit.

— The receiver acknowledges each message by sending
the received bit back.

— To receiver only excepts messages with a bit that it
excepted to receive.

— If the sender is sure that the receiver has correctly
received the previous message, it sends a new
message and it alternates the accompanying bit.

Theo C. Buys - SPTN Beginners' Tutorial 40 s
vy of T

Thursday 11-Apr-2002

CISC422/853, Winter 2009

24

DEMO . .
Alternating Bit Protocol (2
mtype {MS&, ACK} channel proctype Receiver (chan in, out)
= length of 2 i
chan toS =I [2]] of {mtype, bit}; bit recvbit;
chan toR ='[2]' of {mtype, bit}; do
N :: in ? MS@(recvbit) ->

v ity

proctype Sender (chan in, out) A THE L S
o

i

bit sendbit, recvbit; '
do
:: out ! MSG, sendbit ->

in ? ACK, recvhit;

init
{
run Sender(toS, toR):

if run Receiwver (toR, toS):
:: recvbit == sendbit -> }
sendbit = l-sendbit . .
B Alternative netation:
£i ch ! MSG(parl, ..)
od ch ? MSG(parl, .)
1
QP‘ Thursday 11-Apr-2002 Theo C. Ruys - SPTN Beginners' Tutorial 41

Univecity o Tevrmte

CISC422/853, Winter 2009

25

More Promela
= atomic
« force sequence of statements to be executed atomically
« should use as little as possible (why?)
= timeout

* becomes executable when no other statement is executable
¢ note that there’s no time argument
« should use as little as possible (why?)

= labels
 for gotos
« for identifying used to
° accepting states: E.g.: acceptO: do :: true od express
° end states i
properties

progress states: E.g.: progress: sendbit = 1-sendbit (more later)

CISC422/853, Winter 2009 26

More Promela (Cont’d)

= macros (Cpp preprocessor)
e #define DEBUG 1
« #ifdef DEBUG

= All described in

¢ G. Holzmann, The Spin Model Checker: Primer and
Reference Manual. Addison Wesley. 2003.

® www.spinroot.com

CISC422/853, Winter 2009

27

Using Spin

...5y5 tem
description
spin I
: {analyzer generation | (simulation
mode) mode) B
mysys.prom s

...error trace

ﬁ é description

pan.* mysys.prom.trail
l T ..if violation found

gcc | — | Pan.exe

i

=

...search
statistics

)

——

L

CISC422/853, Winter 2009

Using Spin (Cont’d)

* >spin -a mysys.prom

creates dedicated PROMELA analyzer C program (pan.*) that
implements an exhaustive search on the system described in
mysys.prom

" >gcc pan.c —-O pan.exe

compiles the analyzer source (pan. c) to yield an executable
(pan.exe)

lots of compiler flags

= >pan.exe

runs the analyzer
lots of command-line flags
produces mysys.prom. trail containing violating trace

" >spin -t mysys.prom

runs SPIN in simulation mode along the trace in mysys.prom. trail
prints out diagnostic information

Using Spin (Cont’d)

= Use Spin/XSPIN to
¢ check syntax of model: spin -A model.prom
¢ simulate the model
° interactively: spin -p model.prom
° randomly: spin -i -p model.prom
« generate verifier: spin -a model.prom
 inspect/display error traces: spin -t -p model

= Use verifier to check model for
e assertion violations
¢ deadlock (invalid endstates) (default)
* non-progress and acceptance cycles
« complex temporal properties expressed as
° Never claims
° Linear Temporal Logic formula

CISC422/853, Winter 2009 29 CISC422/853, Winter 2009 30
SPIN Verification Report
(Spin Versicn 3.4.12 —- 18 December 2001) A M
the size of a single state? : (X)SPIN Architecture 4 ’= %
longest execution path
Full statespace search for: sdeadlocks
never-claim - (not selec) 'safefypmper'ﬁes
assertion vieclations + -/:'venc::praperﬁe: ol SPINm === === ~ d
cycle checks - (disabled /by -DSAFETY) I LTL (elife el
invalid endstate + n 3 | guided
7~ pro_per_"ry ik I Translator | interactive
State-vector 96 byte, depth reached 18637, errors: O satistied Simalator | 1
169208 states, stored I
71378 5 matched Promela Yoo]‘_:’[: :
iti = Zpin Spln.exe
240586 tra.n_s:l.t:l_on stored+matched) model M P , P — 1
31120 a'FomJ.c steps 1 A Verifier
hash c&_)nfl:l_fts. 150999 (resclved) total number of states \ Generator]
(max size 2%19 states) N ~ 7
(i.e. the state space) s e
Stats on memory usage (in Megabytes): Bag .
17.5398 egquivalent memory usage for states o e?lf!ng wmf:low C program *
(stored# (State-vector + overhead)) simulaticn options prog [FEE-
11.634 actual memory usage for states (compression: 66.11%) verification °P'“°"'5
State-vector as stored = 61 byte + 8 byte owverhead MS5C simulation window 3
counter |false,
2.097 memory used for hash-table (-wl9) .
0.480 memory used for DFS stack (-m20000) example
14.354 total actual memory usage):
& . total amount of memory used for this verification Thursday T1-Apr-2002 Theo . Ruys - SPTN Beginners' Tutarial 2 s
QP\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 7i s [T w——
Uniserziey o8 Rt
CISC422/853, Winter 2009 32

CISC422/853, Winter 2009 31

SPIN CONTROL 4.2.0 -- 27 June 2004

File.. | Edit.. Run.. Help SPIN DESIGN VERIFICATION Lines: 22 Find:
| |proctype P(chan in. out! = U -
[sing

byte %=0:

byte y:

. i XSPIN

© if
D: XEMAX - OUTIX
:: elze -> break

proctype ¢(chan in, out}

byte x:
byte y:

do
Droinmx -3

¥ = x+l:
outly
XSPIN also
chan E_to_q = [1] of [byrel: generates
chan @ to P = [1] of [bytel: .
e © . graphical
Tun FiQ_to B, E_teQ): representation
. run Q(F_to Q, Q to Pi:
of FSA

corresponing to
PROMELA model

Larger Savein:rnsc.ps‘ Close | _| Preserve
|] =

-r -nl -30 pan_in
t

PROMELA Semantics

Each PROMELA proctype (process) p describes an FSA
(S, Sy, L, 9, F) with
= states S: control locations in p
= initial states S {first control location in p}
= |abels L: basic statements in p
e assignments: x=e
e assertions: assert (b)
e print statements: printf (*%d\n”, x)
« send or receive statements: ¢!3 or c?x
. expression statements: (x==3)

CISC422/853, Winter 2009 34

PROMELA Semantics (Cont’d)

Each PROMELA proctype (process) p describes an FSA
(S, Sy, L, 8, F) with

= transition relation &: Control flow graph of p

= final states F: combination of
» end states: last location of p and locations labeled with “end”
e progress states: locations in p labeled with “progress”
e accepting states: locations in p labeled with “accept”

depending on what we check for (more on this later)

CISC422/853, Winter 2009 35

PROMELA Semantics (Cont’d)

For example:

active proctype not_euclid()

{
s: if
1 X mmoy => assert(x != y); goto L
: x>y =>L: xe==x -y
P x <y -> ve=y -x
£i;

E: printf(“%d\n"”, =x)
}

Note:

» Basic statements change variables lprintft".iﬂ\n'.x)

« if, goto, ;, ->, do, break, unless, atomic '
are not basic statements and are not
used as labels

CISC422/853, Winter 2009 36

PROMELA Semantic Engine

Semantic engine stores information about

= global variables (e.g., current values)

= message channels (e.g., current contents)

® processes
¢ names, types, initial, and current values of local variables
 current state (i.e., control location)
« transition relation

° source and target location of transition
° enabledness condition and effect of transition

CISC422/853, Winter 2009 37

PROMELA Semantic Engine (Cont’d)

= Semantic engine of SPIN constructs PROMELA model
(i.e., the iIFSA corresponding to the FSA representing
the PROMELA program) in step by step manner
= Construction of model and error checking happens at
the same time (“on-the-fly” model checking)
= Two basic modes
< simulation (random, guided, interactive)
« verification

CISC422/853, Winter 2009 38

Random Simulation Algorithm of
SPIN’s Semantic Engine

while ('error & lallBlocked) { Visit all
ActionList menu = getCurrentExecutableActions(); processes
and collect all
allBlocked = (menu.size() == 0); executable
actions

if (! allBlocked) {

Action act = menu.chooseRandom();
Execute act
and make

} system enter
} the new state

error = act.execute();

For interactive simulation: act is chosen by the user

CISC422/853, Winter 2009 39

Simplified Verification Algorithm of

SPIN’s Semantic Engine
By default, SPIN uses a depth first search algorithm (DFS) to
generate and explore the complete state space

Can also ask for BFS

procedure dfs(s: state) {

requires
“state matching”

if error(s) reportError(CurrentPath);
foreach (successor implemented

if (t not in AlreadySeen) { as hash table

add t to AlreadySeen; | stack containing

push(t, CurrentPath); ———— | path from initial to

dfs(t); current state
pop(CurrentPath);
}
} More later!
CISC422/853, Winter 2009 40

More Info on PROMELA and SPIN

= Gerard Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison Wesley. 2003
* Chapter 3 (Promela)
e Chapter 7 (Semantics)
e Chapter 11 (Using Spin)
* Chapter 12 (Using Xspin)
" spinroot.com
e spinroot.com/spin/Man/index.html
° Manual pages
° Basic Spin Manual
° Guidelines for using Spin and XSPIN
° Tutorials

CISC422/853, Winter 2009 41

