
CISC422/853, Winter 2009 1

Readings:
Spin book, Chapters 3, 7, 11, 12

Juergen Dingel
Feb, 2009

CISC422/853: Formal Methods
in Software Engineering:

Computer-Aided Verification

Topic 6: Intro to Promela and Spin

CISC422/853, Winter 2009 2

Modeling Behaviour of Systems
Where are we?
• We’ve decided to use FSAs to model the behaviour of

software systems
• Have seen:

° Definition
° Two types of parallel composition
° Various extensions

What’s next?
• But, to be able to feed FSAs into a model checker, we need to

be able to express FSAs textually in some language
• Also, it would be nice if that language was as high-level (user-

friendly) as possible.
• 2 examples for modeling languages based on FSAs:

° BIR (used by Bogor model checker)
° Promela (used by Spin model checker)

CISC422/853, Winter 2009 3

Promela and Spin
Promela (PROcess MEta LAnguage):
• modeling language used to describe concurrent systems, e.g.,

° network protocols, telephone systems
° multi-threaded programs that communicate via
qshared variables, or
qsynchronous/asynchronous message passing

• used by…

SPIN (Simple Promela INterpreter):
• analyzes Promela programs to detect errors such as

° deadlocks, race conditions,
° violations of assertions, invariants, safety and liveness properties

• developed since late 1970s by Gerard Holzmann at Bell Labs
(now at NASA’s Jet Propulsion Lab)

• received ACM Software System award in 2001

CISC422/853, Winter 2009 4

Intro to Promela
http://spinroot.com/spin/Doc/SpinTutorial.pdf:

CISC422/853, Winter 2009 5 CISC422/853, Winter 2009 6

CISC422/853, Winter 2009 7 CISC422/853, Winter 2009 8

CISC422/853, Winter 2009 9 CISC422/853, Winter 2009 10

CISC422/853, Winter 2009 11 CISC422/853, Winter 2009 12

CISC422/853, Winter 2009 13 CISC422/853, Winter 2009 14

CISC422/853, Winter 2009 15 CISC422/853, Winter 2009 16

CISC422/853, Winter 2009 17 CISC422/853, Winter 2009 18

CISC422/853, Winter 2009 19 CISC422/853, Winter 2009 20

CISC422/853, Winter 2009 21 CISC422/853, Winter 2009 22

CISC422/853, Winter 2009 23 CISC422/853, Winter 2009 24

CISC422/853, Winter 2009 25 CISC422/853, Winter 2009 26

More Promela
atomic
• force sequence of statements to be executed atomically
• should use as little as possible (why?)

timeout
• becomes executable when no other statement is executable
• note that there’s no time argument
• should use as little as possible (why?)

labels
• for gotos
• for identifying

° accepting states: E.g.: accept0: do :: true od
° end states
° progress states: E.g.: progress: sendbit = 1-sendbit

used to
express

properties
(more later)

CISC422/853, Winter 2009 27

More Promela (Cont’d)
macros (cpp preprocessor)
• #define DEBUG 1
• #ifdef DEBUG

All described in
• G. Holzmann, The Spin Model Checker: Primer and

Reference Manual. Addison Wesley. 2003.
• www.spinroot.com

CISC422/853, Winter 2009 28

Using Spin

CISC422/853, Winter 2009 29

Using Spin (Cont’d)
>spin –a mysys.prom

• creates dedicated PROMELA analyzer C program (pan.*) that
implements an exhaustive search on the system described in
mysys.prom

>gcc pan.c –o pan.exe

• compiles the analyzer source (pan.c) to yield an executable
(pan.exe)

• lots of compiler flags
>pan.exe

• runs the analyzer
• lots of command-line flags
• produces mysys.prom.trail containing violating trace
>spin –t mysys.prom

• runs SPIN in simulation mode along the trace in mysys.prom.trail
• prints out diagnostic information

CISC422/853, Winter 2009 30

Using Spin (Cont’d)
Use Spin/XSPIN to
• check syntax of model: spin –A model.prom
• simulate the model

° interactively: spin –p model.prom
° randomly: spin –i –p model.prom

• generate verifier: spin –a model.prom
• inspect/display error traces: spin –t –p model

Use verifier to check model for
• assertion violations
• deadlock (invalid endstates) (default)
• non-progress and acceptance cycles
• complex temporal properties expressed as

° Never claims
° Linear Temporal Logic formula

CISC422/853, Winter 2009 31 CISC422/853, Winter 2009 32

CISC422/853, Winter 2009 33

Using
XSPIN

XSPIN also
generates
graphical
representation
of FSA
corresponing to
PROMELA model

CISC422/853, Winter 2009 34

PROMELA Semantics

Each PROMELA proctype (process) p describes an FSA
(S, S0, L, δ, F) with
states S: control locations in p
initial states S0: {first control location in p}
labels L: basic statements in p
• assignments: x=e
• assertions: assert(b)
• print statements: printf(“%d\n”, x)
• send or receive statements: c!3 or c?x
• expression statements: (x==3)

CISC422/853, Winter 2009 35

PROMELA Semantics (Cont’d)

Each PROMELA proctype (process) p describes an FSA
(S, S0, L, δ, F) with
transition relation δ: Control flow graph of p
final states F: combination of
• end states: last location of p and locations labeled with “end”
• progress states: locations in p labeled with “progress”
• accepting states: locations in p labeled with “accept”

depending on what we check for (more on this later)

CISC422/853, Winter 2009 36

PROMELA Semantics (Cont’d)

For example:

Note:
• Basic statements change variables
• if, goto, ;, ->, do, break, unless, atomic

are not basic statements and are not
used as labels

CISC422/853, Winter 2009 37

PROMELA Semantic Engine

Semantic engine stores information about
global variables (e.g., current values)
message channels (e.g., current contents)
processes
• names, types, initial, and current values of local variables
• current state (i.e., control location)
• transition relation

° source and target location of transition
° enabledness condition and effect of transition

CISC422/853, Winter 2009 38

PROMELA Semantic Engine (Cont’d)

Semantic engine of SPIN constructs PROMELA model
(i.e., the iFSA corresponding to the FSA representing
the PROMELA program) in step by step manner
Construction of model and error checking happens at
the same time (“on-the-fly” model checking)
Two basic modes
• simulation (random, guided, interactive)
• verification

CISC422/853, Winter 2009 39

Random Simulation Algorithm of
SPIN’s Semantic Engine

while (!error & !allBlocked) {

ActionList menu = getCurrentExecutableActions();

allBlocked = (menu.size() == 0);

if (! allBlocked) {

Action act = menu.chooseRandom();

error = act.execute();

}

}

while (!error & !allBlocked) {

ActionList menu = getCurrentExecutableActions();

allBlocked = (menu.size() == 0);

if (! allBlocked) {

Action act = menu.chooseRandom();

error = act.execute();

}

}

Visit all
processes

and collect all
executable

actions

Execute act
and make

system enter
the new state

For interactive simulation: act is chosen by the user

CISC422/853, Winter 2009 40

Simplified Verification Algorithm of
SPIN’s Semantic Engine

By default, SPIN uses a depth first search algorithm (DFS) to
generate and explore the complete state space
Can also ask for BFS

procedure dfs(s: state) {

if error(s) reportError(CurrentPath);

foreach (successor t of s) {

if (t not in AlreadySeen) {

add t to AlreadySeen;

push(t, CurrentPath);

dfs(t);

pop(CurrentPath);

}

}

procedure dfs(s: state) {

if error(s) reportError(CurrentPath);

foreach (successor t of s) {

if (t not in AlreadySeen) {

add t to AlreadySeen;

push(t, CurrentPath);

dfs(t);

pop(CurrentPath);

}

}

implemented
as hash table

requires
“state matching”

stack containing
path from initial to

current state

More later!

CISC422/853, Winter 2009 41

More Info on PROMELA and SPIN
Gerard Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison Wesley. 2003
• Chapter 3 (Promela)
• Chapter 7 (Semantics)
• Chapter 11 (Using Spin)
• Chapter 12 (Using Xspin)
spinroot.com

• spinroot.com/spin/Man/index.html

° Manual pages
° Basic Spin Manual
° Guidelines for using Spin and XSPIN
° Tutorials

